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ABSTRACT 

In agricultural land drainage the depth of the water table in relation to crop production and the groundwater flow to drains 

plays an important role. The full energy balance of groundwater flow, equivalent to Joule’s law in electricity, developed by 

Boonstra and Rao (1994), and used for the groundwater flow in unconfined aquifers, can be applied to subsurface drainage 

by pipes or ditches with the possibility to introduce entrance resistance and/or (layered) soils with anisotropic hydraulic 

conductivities. Owing to the energy associated with the recharge by downward percolating water, it is found that use of the 

full energy balance leads to lower water table elevations than the classical methods employing the Darcy equation. The full 

energy balance cannot be solved analytically and a computerized numerical method is needed. An advantage of the 

numerical method is that the shape of the water table can be described, which was possible with the traditional methods only 

in exceptional situations, like drains without entrance resistance, resting on an impermeable layer in isotropic soils. The 

software package EnDrain has been developed to deal with the full energy balance and it is used to analyze a variety of 

drainage conditions. 
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1. INTRODUCTION,  BASIC EQUATIONS 

Agricultural land drainage is widely practiced in the 
world, but it needs to be applied with care [Ref. 1].  
Crop yields are reduced when the water table is too 
shallow (Ref..2, figure 1).  
 
The depth of the water table depends on the drain 
distance (spacing). Spacing calculations between 
consecutive lateral drains are closely related to water 
flow towards the drains [Ref. 3].   
 
Boonstra and Rao [Ref. 4], therefore, introduced the 
complete energy balance of groundwater flow. It is 
based on equating the change of hydraulic energy flux 
over a horizontal distance to the conversion rate of 
hydraulic energy into to friction of flow over that 
distance. The energy flux is calculated on the basis of 
a multiplication of the hydraulic potential and the flow 
velocity, integrated over the total flow depthThe 
conversion rate is determined in analogy to the heat 
loss equation of an electric current, named after Joule. 

 
 

 
Figure 1.  Statistics of the relation between crop 

yield (Y) and seasonal average depth of the water 

table (X in dm). When the water table is 

shallower than 8 dm the yields decline. 
 
For the differentiation of the integral equation, 
Leibniz’s integral rule had to be applied. 
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Assuming (1) steady state fluxes, i.e. no water and 
associated energy is stored, (2) vertically two-
dimensional flow, i.e. the flow pattern repeats itself in 
parallel vertical planes, (3) the horizontal component 
of the flow is constant in a vertical cross-section, and 
(4) the soil's hydraulic conductivity is constant from 
place to place, it was found that [Eq. 1.7 in Ref. 4]: 
 

dJ       ‒Vx        R(J‒Jr) 
−−  =   −−   ‒  −−−−−                           (Eq. 1) 
dX       Kx         Vx.J 

where: J = level of the water table at distance X, 
taken with respect to the level of the impermeable 
base of the aquifer (m), Jr = reference value of 
level J (m), X = distance in horizontal direction 
(m), Vx = apparent flow velocity at X in 
horizontal X-direction (m/day), Kx  = horizontal 
hydraulic conductivity (m/day), R  = steady 
recharge by downward percolating water from 
rain or irrigation water (m/day), dX = small 
increment of distance X (m),  dJ = increment of 
level J over increment dX (m), dJ/dX = gradient 
of the water table at X (m/m). 
 
The last term of equation 1 represents the energy 
associated with the recharge R. When the 
recharge R is zero, Equation 1 yields Darcy's 
equation [Ref. 5], which does not  account for the 
complete energy balance. The negative sign 
before Vx indicates that the flow is positive when 
the gradient dJ/dX is negative, i.e. the flow 
follows the descending gradient, and vice versa. 
 

  
Figure 2. Vertically two-dimensional flow of 

ground water to parallel ditches resting on the 

impermeable base of a phreatic aquifer rechar-

ged by evenly distributed percolation from 

rainfall or irrigation. 
  

Figure 2 shows the vertically two-dimensional 
flow of ground water to parallel ditches resting on 
a horizontal impermeable base of a phreatic 
aquifer recharged by evenly distributed 
percolation from rainfall or irrigation (R>0, 
m/day). At the distance X=N (m), i.e. midway 
between the ditches, there is a water divide. Here 
the water table is horizontal.  
At the distance X≤N, the discharge of the aquifer 
equals:Q = −R(N−X) (m2/day) 
 
where the minus sign indicates that the flow is 
contrary to the X direction. From this water 
balance we find:  
 
Vx = Q/J = −R(N−X)/J (m/day).  
 
With this expression for the velocity Vx, Equation 
1 can be changed into: 
 
dJ        R(N‒X)        Jr‒J 
−−  =   −−−−−−  ‒  −−−−      (Eq. 2) 
dX        Kx.J            N‒X 

 
Setting F = J−Jo, and Fr = Jr−J, where Jo is the 
value of J at X=0, i.e. at the edge of the ditch, it is 
seen that F represents the level of the water table 
with respect to the water level in the ditch (the 
drainage level).  
 
Applying the condition that dF/dX=0 at X=N, we 
find from Equation 2 that Fr=Fn, where Fn is the 
value of F at X=N, and: 
 
F          R(N‒X)      Fn‒F 

−− =  −−−−−−  ‒    −−−−         (Eq. 3) 
X           Kx.J          N‒X 

 
Introducing the drain radius C (m), and 
integrating equation 3 from X=C to any value 
X<N, gives: 
 
       X    R(N‒X)             X     Fn‒F 
F =  ∫    −−−−−−  dX  ‒  ∫      −−−−  dX (Eq. 4) 
       C       Kx.J               C      N‒X 
 
Integration of the last term in equation 4 requires 
advance knowledge of the level Fn. To overcome 
this problem, a numerical solution and a trial and 
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error procedure must be sought. Boonstra et al. 
[Ref. 4] gave a method of numerical solution and 
an example from which it was found that the water 
table is lower than calculated according to the 
traditional method (figure 3). 
 

 
Figure 3.  The water table for flow to a ditch 

according to the water balance equation is 

deeper than according to the  standard Darcy 

equation [Ref. 4].  
 
In the following sections, the equations will be 
adjusted for calculating subsurface drainage with 
pipe drains or ditches that do not penetrate to the 
impermeable base, while entrance resistance may 
occur and the soil's hydraulic conductivity may be 
anisotropic. 

2. PIPE (TUBE, TILE)  DRAINS 

Figure 4 shows the vertically two-dimensional 
flow of ground water to parallel pipe drains with 
a radius C (m), placed at equal depth in a phreatic 
aquifer recharged by evenly distributed 
percolation from rainfall or irrigation (R>0, 
m/day). The impermeable base is taken horizontal 
with a depth D>C (m) below the center point of 
the drains. At the distance X=N (m), i.e. midway 
between the drains, there is a water divide. Here 
the water table is horizontal.  
 
We consider only the radial flow approaching the 
drain at one side, because the flow at the other 
side is symmetrical, and also only the flow 
approaching the drain from below drain level.  
 
According to the principle of Hooghoudt [Ref. 5], 
the ground water near the drains flows radially 
towards them. In the area of radial flow, the 

cross-section of the flow at a distance X from the 
drains is formed by the circumference of a quarter 
circle with a length ½πX. This principle is 
conceptualized in figure 4 by letting an imaginary 
impermeable layer slope away from the center of 
the drain at an angle with a tangent ½π.  

 
Figure 4. Vertically two-dimensional flow of 

ground water to parallel pipe drains placed at 

equal depth in a phreatic aquifer recharged by 

evenly distributed percolation from rainfall or 

irrigation. 

  

The depth of the imaginary sloping layer at 
distance X, taken with respect to the center point 
of the drain, equals Y = ½πX (m), so that the 
vertical cross-section of the flow is equal to that 
of the quarter circle. At the drain, where X = C, 
the depth Y equals Yc = ½πC, which 
corresponds to a quarter of the drain's 
circumference. 
 
The sloping imaginary layer intersects the real 
impermeable base at the distance: 
 
Xi = 2D / π        (Eq. 5) 

The area of radial flow is found between the 
distances X=C and X=Xi. Beyond distance X=Xi, 
the vertical cross-section equals Y = D. 
 
To include the flow approaching the drain from 
above the drain level, the total vertical cross-
section in the area of radial flow is taken as          
J = Y + F. 
 
The horizontal component Vx of the flow velocity 
in the vertical section is taken constant, but its 
vertical component need not be constant.  
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Now, Equation 4 can be written for two cases as: 
 
if C<X<Xi: 
 
       X    R(N‒X)                 X    Fn‒F 

F = ∫  −−−−−−−−−dX  −  ∫     −−−−  dX   (Eq. 6a) 

     C   Kx(F+½πX)          C      N‒X 

 
if Xi<X<N: 
 
      X  R(N‒X)             X   Fn‒F 

F = ∫  −−−−−−− dX −  ∫    −−−−  dX         (Eq. 6b) 
     C   Kx(F+D)          C     N‒X 

3. NUMERICAL INTEGRATION 

For the numerical integration, the horizontal 
distance N is divided into a number (T) of equally 
small elements with length U, so that U = N/T. 
The elements are numbered  S = 1, 2, 3, ...., T. 
  
The height F at a distance defined by the largest 
value of distance X in element S, is denoted as FS. 
The change of height F over the S-th element is 
denoted as GS, and found from: GS = FS ‒ FS-1 
 
The average value of height F over the S-th 
element is: FS = FS-1 + ½GS-1 
 
For the first step (S=i, see equation 10 below), the 

value of FS = Fi must be determined by trial and 

error because then the slope GS-1 = Gi-1 is not 
known. 
 
The average value of the horizontal distance X of 
the S-th element is found as: XS = U(S‒0.5) 
 
The average value of depth Y over the S-th 
element is: 
 
YS = ½πXS     when    C<XS<Xi            (Eq. 7a) 
YS = D            when    Xi<XS<N            (Eq. 7b) 
 
Equation 3 can now be approximated by: 
 
GS = U(AS+BS)                           (Eq. 8) 

where: AS = R(N‒XS) / ZS   with : 

ZS = Kx(YS+FS) when   C<XS<Xi         (Eq. 9a) 

ZS = Kx(D+FS)  when   Xi<XS<N         (Eq. 9b) 

and: 

BS = (FS-FS) / (N-XS) 

where FT is the value of FS when S = T. The 
factor ZS can be called transmissivity (m2/day) of 
the aquifer. 
 
Now, the height of the water table at any distance 
X can be found, conform to Eqs .6a and 6b, from: 
         S 
FS = ∫ GS                             (Eq. 10) 
        i 

where i is the initial value of the summations, 
found as the integer value of: 
 
i = 1 + C / U                             (Eq. 11) 

so that the summation starts at the outside of the 
drain. 
 
Since FS depends on BS and BS on FS and FT, 
which is not known in advance, Equations 8 and 
10 must be solved by iterations.  
 
Omitting the last terms of Equations 6a and 6b, 
i.e. ignoring part of the energy balance, and 
further in similarity to the above procedure, a 
value GS* can be found as: 
 
GS* = R.U(N‒XS)/ZS*                          (Eq. 12) 

where: 

ZS* = Kx(YS+FS*)    when    C<XS<Xi 

ZS* = Kx(D+FS*)     when    Xi<XS<N 

and: FS* =FS-1*+½GS-1*  

Thus the height of the water table, in conformity 
to Equation 10, is: 
           S 
FS* = Σ GS*                         (Eq. 13) 
          i 
This equation corresponds to the classical 
Hooghoudt equation [Ref. 5] and will be used for 
comparison with Equation 10 (accounting for the 
energy balance). 
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4. EXAMPLE OF A NUMERICAL SOLUTION 

 
To illustrate the numerical solutions we use the 
same data as in an example of drain spacing 
calculation with Hooghoudt's equation given by 
Ritzema [Ref. 5]: 
 
   N   =   32.5    m    C    =  0.1    m 
   Kx  =    0.14   m/day   R    =  0.001  m/day 
   D   =    4.8    m    Fn* =  1.0    m 
 
The calculations for the numerical solutions were 
made on a computer with the EnDrain program 
[Ref. 6]. The results are presented in table 1 and 
in figure 5. 
 Table 1 gives the values of  height FS* (no 
energy balance), water table gradient GS*/U, 
height FS (with energy balance) and gradients 
GS/U, AS and BS at some selected values of 
distance X with steps of U = 0.05 m, so that in 
total 650 steps are taken with a large number of 
iterations. Smaller values of step U yield no  
different results. 
 

 
 

 
Figure 5.  The shape of the water table 

calculated with the energy balance equation 

and the Darcy equation (traditional) for the 

conditions given in the example. Graph 

produced by EnDrain. The Darcy equation 

gives a higher water table as it ignores the 

incoming energy associated with the downward 

percolating water. 

 

Table 1.  Shape of the water table ignoring the energy balance (F*)  and accounting for  the 

energy balance (F) as calculated with EnDrain for the conditions described  in the example of 

Section 4, using equations 8 and 10 with steps U = 0.05 m. 
 Distance from 
 drain center 
  (m) 

Height of water 
table F* (m) 
(Darcy)  

Gradient of F* 
G / U (m/m) 

Height of water  
table F (m) 
(full energy balance) 

Gradient needed 
for flow (m/m) 

Adjustment of  F* 
due to energy of  
recharge ( m/m) 

   0.75   0.24   0.164   0.23   0.147   ‒0.0169 
   1.5   0.33   0.085   0.31   0.070   ‒0.0149 
   3   0.42   0.042   0.37   0.029   ‒0.0134 
   6   0.53   0.033   0.45   0.025   ‒0.0119 
   9   0.63   0.032   0.52   0.022   ‒0.0105 
 12   0.72   0.028   0.58   0.019   ‒0.0092 
 15   0.80   0.014   0.64   0.016   ‒0.0078 
 18   0.86   0.020   0.68   0.013   ‒0.0065 
 21   0.91   0.015   0.71   0.010   ‒0.0052 
 24   0.95   0.012   0.74   0.008   ‒0.0039 
 27   0.98   0.008   0.76   0.005   ‒0.0026 
 30   0.99   0.004   0.77   0.0024   ‒0.0015 
 33   1.00   0   0.78   0     0 

 
It is seen from table 1 that the Fn* value (i.e. the value 
of F* at X = N = 33 m) equals 1.00 m. This is in 
agreement with the value used by Ritzema [Ref. 5]. 
 In table 1 it can also be seen that the height of 
the water table above drain level midway between the 
drains (F*)  is 1.00 m in case of ignoring part of the 
water balance whereas it is only 0.78 m when 
accounting for the whole water balance.  

 
The Hooghoudt equation in the example given by Ritzema 
[Ref. 5] also gives F* = 1.0 m as height midway between 
the drains. The drain spacing is 66 m so table 1 gives the 
height of the water table midway between the drains at 33 
m. Table 1 also shows the height of the water table at any 
distance from the drain, while the Hooghoudt equation only 
yields the midway height. EnDrain is more versatile. 
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When a value of elevation Fn=1.0 m is accepted, the 
spacing can be considerably wider than 66 m so that 
the inclusion of the energy balance in the calculation 
of the drain spacing allows a cheaper drainage system. 
 

.  

Figure 6.  Screen print off the EnDrain input tab 

sheet  showing the data used in the previous example 

according to the data presented at the beginning of 

this section. 

 

Figure 6 demonstrates the options in the EnDrain 
program like calculating the drain spacing, the drain 
discharge, the hydraulic head, or the hydraulic 
conductivity. The figure also clarifies that, in the 
example,  no soil stratification  and no anisotropic 
hydraulic conductivity were used. 

5. ENTRANCE RESISTANCE 

 
When entrance resistance [Ref. 7]  is present, the water 
level just outside the drain is higher than inside by a 

difference Fe, the entrance head. Now, the first value Fi of 

FS is changed into Fi' = Fi+Fe. Otherwise the calculation 
procedure remains unchanged. 
 An example of the results of calculations with 
the energy balance for pipe drains with varying 
entrance heads, but otherwise with the same data as in 
the first example for pipe drains, is shown in Table 2.  
Here it is seen that the increment of elevation Fn with 
respect to Fe (Fn-Fe, column 4) decreases with 
increasing Er value. This means that part of the 
entrance head loss is recovered further away from the 
drain thanks to a somewhat larger cross-section of the 
flow. Hence, the adverse effect of entrance head can 
be partly compensated  

Table 2.  Results of the calculations of the height Fn 

of  the water table, taken with respect to the drainage 

level, midway between ditches of different shapes, 

using a numerical and iterative solution of the 

hydraulic energy balance for the conditions described 

the example of Section 4, applying Equations 8 and 10 

with steps U=0.05 m and making the adjustments as 

described in Section 6. 
Entrance  
resistance 
(day/m) 

Entrance 
head Fe (m)  
at the drain 

Elevation of  
the water 
table Fn (m) 

  
Fn – Fe 

 0.0   0.000    0.759   0.759 
  0.1   0.065   0.793   0.728 
  0.2   0.130   0.833   0.703 
  0.3   0.200   0.876   0.681 
  0.4   0.260   0.921   0.661 
  0.5   0.325   0.970   0.644 

 
 

6. ANISOTROPY 

 
The hydraulic conductivity of the soil may change 
with depth and be different in horizontal and vertical 
direction [Ref. 8]. We will distinguish a horizontal 
conductivity Ka of the soil above drainage level, and a 
horizontal and vertical conductivity Kb and Kv below 
drainage level. The following principles are only valid 
when Kv>R, otherwise the recharge R percolates 
downwards only partially and the assumed water 
balance Q= ‒R(N‒X) is not applicable 
The effect of the conductivity Kv is taken into account 
by introducing the anisotropy ratio A=√(Kb/Kv), as 
described by Boumans [Ref. 9].  
 
The conductivity Kb is divided by this ratio, yielding a 
transformed conductivity: Kt = Kb/A =  √(Kb.Kv). As 
normally Kv < Kb, we find A>1 and   Kt < Kb.  
The depth of the aquifer below the bottom level of the 
drain is multiplied with the ratio.  
 
Hence the transformed depth is: Dt=A.D . 
 

The distance Xi = 2D/π (equation 5) of the radial flow 
now changes into Xt =2Dt/π. When A>1, the 
transformed distance Xt is larger than Xi. The effect 
of the transformation is that the extended area of radial 
flow and the reduced conductivity Kt increase the 
resistance to the flow and enlarges the height of the 
water table. 
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Including the entrance resistance, the transmissivity ZS 
(Equations 9a and 9b), for different types of drains, 
now becomes: 
 
when [C<XS<Xt]: 

 
    ZS = ½πKt.XS + (Kb-Kt)Dd + Ka.FS   

  when [Xt<XS<N]: 

    ZS = Kt.Dt + Ka.FS        

Table 3 gives an example of energy balance 
calculations for pipe drains in soils with anisotropic 
hydraulic conductivity using  Ka = Kb = 0.14, as in 
the previous examples, and Kv = 0.14, 0.014 and 
0.0014. This yields anisotropy ratios  A = 1,  3.16,  
and  10  respectively. All other data are the same as in 
the previous examples. 
 
Table 3   Results of the calculations of the height Fn 

(m) of the water table, taken with respect to the 

drainage level,  midway between pipe drains and 

ditches in anisotropic soils with a fixed value of the 

horizontal hydraulic  conductivity Kb=0.14 m/day, 

using a numerical and iterative solution of the 

hydraulic energy balance for the conditions described 

the previous examples, employing Equations 8 and 10 

with steps U=0.01 m and  making the adjustments as 

described in Section 6. 
Vertical hydraulic 
conductivity  

Kv (m/day) 

Height Fn of the water table 
above drain level (m) for 
pipe drains with C = 0.1 m 

  0.140     (A=1.0)         0.76 
  0.040     (A=1.9)         0.93 
  0.014     (A=3.2)         1.13 

 
The table shows that the height Fn increases with 
increasing ratio A and the increase is higher for the 
smaller pipe drains than for the larger ditches. This is 
due to the more pronounced contraction of the flow to 
the pipe drains than to the ditches and the associated 
extra resistance to flow caused by the reduction of the 
hydraulic conductivity for radial flow from Kb to Kt.  
 
7. lAYERED (AN)ISOTROPIC SOILS 

 
The soil may consist of distinct (an)isotropic layers. In 
the following model, three layers are discerned. 
 The first layer reaches to a depth D1 below the soil 

surface, corresponding to the depth Wd of the water 
level in the drain, and it has an isotropic hydraulic 
conductivity Ka. The layer represents the soil 
conditions above drainage level. 
  
The second layer has a reaches to depth D2 below the 
soil surface (D2>D1). It has horizontal and vertical 
hydraulic conductivities K2x and K2v respectively 
with an anisotropy ratio A2.The transformed 
conductivity is Kt2 = K2x/A2. 
  
The third layer rests on the impermeable base at a 
depth D3 (D3>D2). It has a thickness T3=D3‒D2 and 
horizontal and vertical hydraulic conductivity Kx3 
and Kv3 respectively with an anisotropy ratio A3. The 
transformed conductivity is  Kt3= K3x/A3, and the 
transformed thickness is Tt3=A3.T 
 
When the thickness T3 = 0 and/or the conductivity  
K3 = 0 (i.e. the third layer has zero transmissivity and 
is an impermeable base), the depth D2 may be both 
larger or smaller than the bottom depth Db of the 
drain. Otherwise, the depth D2 must be greater than 
the sum of bottom depth and the (equivalent) radius 
(C* = C, Ce, Cw, or Cn) of the drain, lest the radial 
flow component to the drain is difficult to calculate. 
For pipe drains D2 > Dw + C* = Dw + Dd, the 
transformed thickness of the second soil layer below 
drainage level becomes Tt2 = A2(D2−Dw).  
 
With the introduction of an additional soil layer, the 
expressions of transmissivity ZS in Section 7 need 
again adjustment, as there may two distances Xt (Xt1 
and Xt2) of radial flow instead of one, as the radial 
flow may occur in the second and the third soil layer: 
     Xt1 = 2Tt2/π 
     Xt2 = Xt1 + 2Tt3/π 
 
With these boundaries, the transmissivities in case of 
pipe drains become: 
 
when [C<XS<Xt1]: 

 ZS = ½πKt2.XS + (Kx2−Kt2)Dd + Ka.FS        

when [Xt1<XS<Xt2]: 

 ZS = Kt2.Tt2 + ½π Kt3.XS + Ka.FS          
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when [XS>Tt2]: 

 ZS = Kt2.Tt2 + Kt3.Tt3 + Ka.FS         

An example will be given for pipe drains situated at 
different depths within the relatively slowly permeable 
second layer having different anisotropy ratios and 
being underlain by an isotropic,  relatively rapidly 
permeable, third layer with different conductivities.  
 
We have the following data: 
N  = 38 m           C    = 0.05 m           R  = 0.007 m/day 
D1 = 1.0 m         D2  = 2.0 m             D3   = 6.0 m 
                            Kx2 = 0.5 m/day     Kx3 = 1.0 m/day 
Ka = 0.5 m/day   Kv2= 0.5 m/day      Kv3 =1.0 m/day 
 
and variations:  
Kv2 = 0.1 m/day                Kv2 = 0.05 m/day 
Kx3 = Kv3 = 2.0 m/day      Kx3 = Kv3 = 5.0 m/day 
 
 

The results are shown in Table 4. 
 
These results indicate that both the conductivity of the 
3rd layer and the anisotropy of the 2nd layer, in which 
the drains are situated, exert a considerable influence 
on the height Fn. 
 
In the Netherlands, it is customary to prescribe a 
minimum permissible depth of the water table of 0.5 
m at a discharge of 7 mm/day, which is exceeded on 
average only once a year.  
 
In the example, with a drain depth of 1.0 m, this 
condition is fulfilled when the height Fn is at most 0.5 
m. Here, this occurs when Kv2 is at least 0.5 m/day 
and when Kx3 = Kv3 is at least 2.0 m. To meet the 
prescription in the other cases of the example, either 
the drain depth should be deeper or the drain spacing 
narrower. 
 

Table 4.  Results of the calculations of the height Fn (m) of the water table, taken with respect to the drainage 

level, midway between pipe drains in a layered soil of which the second layer, in which the drains are situated, has 

varying anisotropy ratios with a fixed value of the horizontal hydraulic conductivity Kx2=0.5 m/day, using a nume- 

rical and iterative solution of the hydraulic energy balance for the conditions described the example of Section 7, 

employing Equations 8 and 10 with steps U=0.05 m and making the adjustments as described in Section 7. 

Hydr. Cond. 
3rd layer 
Kx3=Kv3 
(m/day) 

Vert. Hydr. Cond. 
2nd layer 
Kv2 
(m/day) 

Anisotropy 
ratio A2 
2nd layer 
(−) 

  Height Fn of the 
  water table above 
  drainage level 
  (m) 

  1.0   0.5   1.0   0.54 
  1.0   0.1  2.24               0.75 
  1.0   0.05  3.13                            0.86 
 
  2.0   0.5   1.0   0.45 
  2.0   0.1  2.24               0.67 
  2.0   0.05  3.13                            0.79 
 
  5.0   0.5   1.0   0.37 
  5.0   0.1  2.24               0.60 
  5.0   0.05  3.13                             0.74 

CONCLUSIONS 

 
Application of the complete energy balance of 
groundwater flow to pipe and ditch drains leads to 
lower elevations of the water table or, if the elevation 
is fixed, to a wider drain spacing compared to standard 
formulas A numerical solution, moreover, can give the 
shape of the water table.  

 
 
 
Further, it can take entrance resistance and anisotropy 
of the soil's hydraulic conductivity into account. 
 
Calculations with the full energy balance need be done 
on a computer because of the cumbersome iterative, 
numerical procedure required. EnDrain may be useful 
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software for that purpose. A similar program for 
drainage by pumped well is also available [Ref. 10]. 
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