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FREQUERCY FREDICTIONS AND THEIR EINOMIAL CONFIDEWMCE LIHITS

ABRFTRACT

Graphs are presented By which the 80, %0 snd 91F confidenze intervals of 8
treguency or return pericd, foand from frequency distributions baced on records
gf limdved size, cen be devesmined indepandently of the type o= distribution
used. The graphs are coostrocted from binomial probability distributicns

Application of the binozial confidence intervals and the resulting confidence
belte shews that The kind of Irequency distrivutien (e.g the expenentisl,

log-normal and Gumbel distributdon] wsed for the predictiom of frequencies of
extrams values is relatively immaterizl. The seme holds for the method (e.g.
the plotting and paremetric methoc] by whdch the distribution is determned.

RESHE

Cang les graphigues presentée les intervalles de fiabiliné J'une fréquence ou
c'une péricde de Tetour, trowvée & pertiv des distributions de fréguence hasées
Euc une série de donnbes limitée, peavent dtre détermines Sndéependasment du
type de disteibution uwtilisd, les graphiquaes sont cemstruits & partir de
gistributions binfmiales,

L'application des invervalles bindmiales de fiabdlité et les zones de fiabilicd
résultentes montre gue le type de distribution (p.ex. l'exposant, le log-normal
ey Gambel) wbilisé pour la poédiction des frdquences de veleurs extoines ept
¢'importence relative. Ceci est egalemant walsble pour la méthode (p. ex. la
mebhode graphique ou parametrigue) avec laquelle on ajuste la distsibutisn.

1, INTRODUCTION

Fraquency predictioms frem vecords of rainfalls, tiverstages er floeadlewals
nead to be accompanied by confidence statements, because the predictioms can be
guite insecure, especially when the records are shorTt or when extizeme values
are comsidered,

For exawple, Figure | (after Benmseon 19600 shows the wvesious fre

disvzibuticns ebtained from diffecent samples, sach wizh 50 chservations taken
randenly from 1,000 velues cboeyimp & flwed distsibation (bese surwve). The
figure mekxes it clear that each eample Tields & different curve. The highest
and lewest curves indicete & confidence belt of the samples curves.

In this article, grephs are given for the satimaticn of conflidence belts fox
frequency distribations ootained from & record of limited size. These belts are
based on bincmial probabllity distrivuticns and imdicate the area in which the
{unknown) base cufve day be situated,
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Figure 1. Frequency curves representing different 50-year sample pericds '
derived from the same base curve (afrer Benson 1960).

In hydrologic literature, numerous methods for confidence estimates of
cumulative freguency distributions have been discussed (e.g. Kite 1973), but
they do gemerally not involve the binomisl distribution, even though it s
guite suitable for this purpose. This article, therefore, is an attempt to open
the discussion on the possibility of more frequent use of the binomisl
distribution for estimates of confidence belts.

The use of the bincmial confidence belts given in the graghe is illustrated for

three different types of freguency distributicms, viz. the exponential, the

log-normal, and the Gumbel or Fischer Tippett Type I distribution. In additienm,

these distributions are determined by two different methods based on

respectively:

- Estimation of the fregquencies from an intervel count or & ranking of the
data, followed by & fitting of the distribution (plotting method);

- Estimation of the parameters (mean and variance) of the distribution from
average and stendard deviation of the data (paramerric method).

The aim of the sbove illustrations is to investigate whether the type of
frequency distribution used and its method of determinatien leed to significant
differences in frequency prediction compared to the width of the confidence
intervals.

2. CONFIDEKWCE AMALYSIS OF CUMULATIVE FREQUENCIES.

In hydrclogical practice one uses often cumulative (non-exceedance) or
exceedance freguency distributions for freguency prediction. These
distributions are dealing with two possibilities only: there is exceedance or
there iz no exceedance. Then the binomial probability distribution can be used
1o estimate cenfidence limits of the predicted freguencies, because it deals
with the probabilities of only two, mutually exclusive, events.



In hydrologic literature, confidence limits are usually derived from a
probability distribution of an event at a certain return pericd or freguency.
For example, Kite (1975) assumes for this a normal probability distributien
with parameters determined from the 1lst, 2nd and 3rd moments of the frequency
distribution concerned. The binominal distribution is used differenmtly: it
gives confidence limits of a2 frequency at a certain magnitude of the event.
It's advantages are that it i independent of the fregquency distribution used,
tha= it needs no assurptien about the probability distribution of the event at
at a certsin return pericd, and that it, legically, considers the estimated
frequency as the uncertain facter rather than the actually measured event.
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Applicaticn of the binomial distribution reguires a larpge set of binomial tables
or computer facilities. Instead, Figures 2a, b and ¢ have been prepared (on
normal probability scale) to facilitate the determination of the confidence
belts. Similar belts heve been presented by Pesrson and Hartley [195€), but they
were drawn on a lineer scale, so that they can not be read for extreme

situations.
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Figure 2b. 90% Einominal confidence belts for different values of sample size ¥



The Figures 2a, b and ¢ vere made with the help of the binomial tables prepatid by
the Staff of the Computation Laboratory (1955). Use has alsc been made of the
graphs of the binomial distribution prepared by Eisenhart et al. (1947).
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The use of the figures it as follows. The cbserved cumulative frequency (F.) is
converted into an exceedance frequency (F, = 1 = F.) or return peried ef
-exceedance (T.= 1/F,). The value of F, or T, is plotted on the middle line of
the graph, inﬁi:ntea by N = =, From there, one goes vertically up or down until
reaching the curve corresponding to the number of dazta (W) use for the
estimation of the frequency or the return period (see the example in Figure

2c). Thus one reads respectively:
- An upper confidence limit (T,) of the return period, or & lower confidence

limit (Fg,) of the exceedance [requency;
- A lower confidence limit (T,) of the return period, or an upper confidence
limit (Fg,) of the exceedance freguency.

Tne resulting confidence intervals T, - T,. I, ~ Fay 0T Foy = Foy are
determined with 95, 90 or B0% ecertainty depending on whether one uses Figure
2a, b or ¢ respectively, This means that there is still 5, 10 respectively 203
chance that the fregquencies or return periods to be predicted are even higher
or lower than indicated by the confidence limits.

The example in Figure Zc shows that a 5 year returm period has an BOR
confidence interval ranging from 2.2 to 1B years when N = 10.

In theory, the exact confidence intervals are somewhat wider than shown in the
graphs, because the mean values end standard devisticms of the binomial
distributions used are estimated from & data series of limited length. Hence,
the true means and standard deviations may be either smaller or larger than the
estimated ones. However, the error made in the estimation of the confidence
intervals is small compared to their width.

gince the confidence intervals refer to the fregquencies expected for 2 very
long future without systematic changes in hyérelegic conditions, the confidence
intervals for shorter future periods sre, again, wider than indiceted in the
graphs. The same is true when & change of hyérologicel conditions occurs.

In conclusion it can be said that the intervals presented in the graphs are the
narrowest possible.

2. FREQUENCY ESTIMATES BY RANKING METHODS

For direct freguency estimation, the data can be ranked in either ascending or

descending order. For a descending order the sugpested procedure is:

- Rank the (n) data (x) in & descending order: the highest value first, the
lowest last;

- Attach a serial rark number (r) to each value x (x,, r = 1, S, ¥ neng, DY,
the highest value being X, the lovast X.; ‘

- Divide the rank mumber {r} by the total rumber of cbservations plus 1 to
gbtein the frequency of exceedance as

Fo = Fix > x,) = 5&1

- Determine the cumulative frequency (frequency of non-exceedznce] as:

Fo= Fixsx) = 1-Flx>x)=1-g7
- Find the return period of exceedance as T, = I/F, = 1/(1 - F¢)



The return period gives the long term average intervel in which the defined
phenomenon will occur ence, but there is always the risk that the phenomenon
does occur more than once within the return period. According to the bincminal
distribution, the chance that a&n event with a return pericd T, occurs one or
more Times in the coming n years is

lipwd e e ek B EIR 2 T =B

For example, if T, is 10 yeers, then the chance that the exceedance oCCurs &t
leagt once in the coming 5 years is C =1 - (1 - 1/10)7 = 0.41 or 41 .

If the ranking procedure is the reverse of the one explained before (ascending
instead of descending order), the same relations as above are cbtzinable
interchanging F_, and F.. An advantage of using the denominator n+l is that the
results are identical when ascending or descending ranking orders are used. In
literature, other expressions for the assignment of freguencies have been
proposed, but they do mot have the advantage of the reversibility.

Most frequency assignments are not unbissed, especially for the extremes. It
has been proved (Gumbel, 1954) that the assignment proposed above gives only an
unbiased estimate for the mode of the Gumbel distribution.

Table 1 shows the application of the ranking method to maximum 3=day rainfezlls

(in mm) selected from the April records of 1954 to 1963 from the metecrological
staticn Wl in the Wageningen Polder, Surinam. The data of Tzble 1 will be used

in 21l following examples

Table 1. Example of the ranking method

Rank Values Freguencies R.E.
T x y=log = Feo Fe in F, Ta

1 137 2.14 0.91 0.09 -2.41 11

2 110 2.04 0.82 0.18 -1.71 5.6
3 82 1.21 0.73 0.27 =1.31 3.7
4 71 1.85 0.64 0.36 ~1.02 2.8
5 62 1.79 0.55 0.45 -0.B8D 2.2
6 42 l.62 O.45 0.55 -0.60 1.8
7 39 1.59 0.36 0.64 =0.45 1.6
a 28 L. 46 0.27 0.73 -0.31 1.4
9 26 1.41 0.18 0.82 -0.20 1.2
10 5 0.70 0.09 0.91 -0.0% 1.1

From the above table we find that

x = 60 s, = 40.7 ¥ = 1.65 sy = 0.41
where X end ¥ are the average values cof x and ¥
5, and s, are the standard deviations of x and y



4, THE EXPONENTIAL FREQUENCY DISTRIBUTION

The cumulative exponential frequency distribution reads
Icll--u"x. so that F_ = 1'-}‘=-e"x. end IlnF, = -ax
where & = 1/p, and p is the mean of the distribution, estimated by X.

In Figure 3, the data of Table 1 (x and In F,, pbtained by the ranking method)
are plotted in & graph with an eye estimate of the best fitting straight line
(plotting method). Further, using the parematric method, the line In E, = -a& X,
with the slope a = 1/% = 1/60 = 0.017, is plotted through the points

(x=0, 1lnF_= 0) and (x =60, 1n ¥, = ~1), topether with its B0% confidence
belt. Also, tﬁc BOY econfidence interval of & 5 year return period, ranging from
2.2 to 18 years (as shown in the example of Figure 2e), is specifically

indicated in Figure 3 by 2 dotted line.

It ie seen that the line determined by the plotting method - for which the
expression ln F, = =0.20 (x - 20) holds - falls within the confidence belt
(except at very low rainfall values, beczuse this line does not permit values
legs than 20 mm). Also, the difference between the two lines is small cocmpared
to the confidence belt. Hence it is diffieult to say which of the lines is the
better one.

From the figure it is seen that, for example, & 3-day April rainfall with a
return period of 5 years (T, = 5, F, = 0.2 and InF, = -1.6) is, with 80%
certainty, between the limits of 55 and 170 mm.
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Figure 3. The exponential frequency distribution fitted to the data of Table 1.



4. THE LOG-NORMAL FREQUENCY DISTRIEUTION

The normal frequency distribution, alsc known as the Gauss or the De Hoivre
distribution, cannot be written directly in terms of cunulative freguencies.
The same holds for the log=normal distribution. The mathematical expression of
& log-mormal distribution is therefore given as & frequency density function

() = gh e [ S5

vhere
f(y) = the normal frequency density function of ¥
i = log x, the log-normal variate (0 < x (=, —={y ¢ =
i = tne mean of the distribution, estimated by ¥
g? = the variance of the distribution, estimated by 52. where 5 i

the standard deviation of ¥
The factor (y - p)/o is called the reduced log-normal veriate (¥').

L]
The fregquency of exceedance of y can be found fraom Pe(yl = I f(y) dx, the
solusion of which must be found by numerical metheds. The sulgtians are given
in most statistical handbooks in the form of tsbles. One finds, for example,
Folud = 0.5, Felu+o) = 0.15 and Fg(p-o) = 0.84.

Ir Figure 4, the data of Table 1 (y and Far obtained by the renking methed)
are plotted on normal prebability paper waith an eye estimate of the best
fitting straight lime {the plotting method). Further, using the parametric
method, a Etraight line is drawn through the points (%, F, = 0.5) and

(X + 5,, F = 0.16), together with its BOY confidence interval and a specific
indicaziun of the example in Figure Zc.

+ i& seen that the line determined by the plotting method falls entirely
within the confidence belt. Also, the difference between the two lines is small
compared to the width of the confidence bel=. Hence it is difficult to say
whien of the lines is the better one.

4 3-day April rainfzll with a return period of 5 years will be between the
jimite of 58 and 190 mm, with 80% confidence. This range 1s not much different
for the corresponding range estimated before bY the exponential distribution.

5. THE GUMBEL FREQUENCY DISTRIEUTION

The Gurbel or Fischer-Tippett Type I distribution of extreme values (Gumbel,
1954) car be written &5 & cumulative freguency distribution

Fo = exp (~exp (-alx - u)l]

where
u =y - c/a, the mode of the distributien
B = the mean of the distribution, estimated by x
¢ = Euler's constant = 0.5377
a = n/ofé
o = gtendard deviation of x, estimated by

The factor al(x -‘u) is called the reduced Gumbel variate (x').
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Figure 4. The log-normal fregquency distribution fitted to the data of Table l.

It can be proved that the cumulative probability distributicn of the maximum
value of & sample of size m approaches asymptoticzlly the Gumbel distribution
with increasing m, if the samples are drewn frem & distribution of the
exponential type. In hydrological practice it is assumed that the asymptotic
approach is already realized for m » 10. Therefore, the Gumbel distribution is
often used in hydrology for annual or monthly maxima of floods or rainfalls of
relatively short durationm.

The Gumbel distribution can alsc be written as
x' = -1ln {-1n I‘cl = =1n {=ln (1 = !‘e]] = =ln {-1n (1 - UTR}]
Frem the data of Table 1 it is found that v = 42 and @ = 0.032. Also, it is

found that for x = u (where x' = 0): F, = 0.37, and for x = 137 (vhere x' = 3):
F_ = 0.95.
c



In Figure 5, the data of Table 1 (x and ¥, obtained by the ranking mathod) are
plotted on Gumbel probability paper with an eye estimate of the best fitting
straight line (the plotting method). Further, using the parametric method, a
straight lihu is drawn through the points (x =u, F. = 0.37) and

(x = 137, = (0.95), together with its BO0X confidence interval and a specific

1nﬂ;=atzon ui the example in Figure 2c.

It it seen that the line determined by the plotting method falls entirely
within the confidence belt. Also, the difference between the two lines is
small compared to the width of the confidence belt, Hence it is difficult teo
say which of the two lines is the better one.

From Figure 5 it is seen that & 3-day April rainfall with & return period of 5
years will be between the limits of 57 and 180 mm, with BOX confidence. This
range does not differ much from the ranges estimated previously by the
exponential and log-normel freguency distributions.
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Figure 5. The Gumbel freguency distribution fitted to the data of Table 1.



6. CONCLUSIONS »
From the foregoing consideraticns the following conclusions can be drawn:
- Fregquency predictions need to be accompanied by confidence statements;

- The binomial probability distribution can be used for the assessment of the
confidence intervals for cumulative and exceedance freguencies, as well as
for exceedance return periods, independent of the type ol Ireguency
distribution used;

= The differences between freguency predictions, using different freguency
distributicns and different methods for their determination, are small
compared to the width of the confidence intervels and, therefcre, these

differences are insignificant;

= The variation of the plotting positions around the best fitting lines is not
indicative of the reliabilicy of the freguency distribution because, owing
“to the application of the ranking procedure, a very high correlaticn between
frequencies and values of the hydrelogic event is automaticzlly introduced;

= The return pericd, e&s a toel for the economic eveluation of hydreaulic works
designed to cope with hydrologic events not exceeding the corresponding
value, has a limited significance because:

* The assessment of the exact value of the return pericd and the
correspending value of the hydrologic event is subject to a large
uncerteinty:

* There is & considereble risk that the hydrelegie event, on which the
design is based, is exceeded more than once within the return period.
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