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Abstract
Classically the propagation of flood waves in rivers is mathematically described by the 
Muskingnum model that analyzes and evaluates flood routing. In this article a new model is 
introduced for this purpose based on the principles of the hydraulic non-linear reservoir concept. 
The non-linear reservoir model (FloodRoute) contains two parameters that can be calibrated 
when over a river reach (section) the inflow and outflow discharges have been measured 
(observed) over time. With the calibrated parameters predictions can be made for the outflow 
discharge wave given any inflow wave pattern. Examples of hydraulic wave propagation analysis
are given.
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1. Introduction

The classical Muskingnum model describing mathematically the propagation of flood waves in 
rivers was introduced by MacCarthy (1938, reference 1) and later expanded by Ven Te Chow 
(1959, reference 2). The principles of the Muskingnum are described in the Appendix.

The flood routing is, in fact, the calculation of the flood hydrograph in the downstream reach 
(stretch) of the channel.

Various hydraulic and hydrological methods are used for flood routing. In other words, the 
estimation of the flood hydrograph is called ‘flood routing’

The Muskingum flood routing is one of the most important hydrological methods. This model 
uses continuity equations and relationships between discharge, outflow and flooding values.
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In this article it is proposed to introduce another model for the mathematical description of  the 
propagation of flood waves in rivers, based on the principles of a non-linear hydraulic reservoir. 
For the operation of this model the free FloodRoute software has been designed.

2. The hydraulic non-linear reservoir model

In hydrology, the concept of non-linear reservoirs has seldom been applied. Instead of a reservoir 
with a constant reaction factor, one could employ a non-linear reservoir with a reaction factor that
changes linearly with storage (figure 3)  instead of being a constant, thus avoiding the difficulty 
of dealing with a series of reservoirs.

Figure 1. A non-linear reservoir with multiple outlets whereby the discharge increases more 
than proportionally with the storage. 

For the purpose of describing mathematically the propagation of flood waves in rivers. the terms 
Recharge and Discharge in figure 1 can be replaced by Inflow (R) and Outflow (Q) of the river 
stretch (reach, section) under consideration respectively.

The outflow Q is a function of the storage S:

Q = α*S = (B*Q + C)*S     so that     S = Q / (B*Q+C)                                          



where the reaction factor or response function α  equals   B*Q + C. 

Differentiating S to time T gives  dS / dT  =  R – Q  =  R ‒ α*S  so that:

dS / dT  =  R ‒ ( B*Q + C )*S   =  R ‒ B*Q*S + C*S               

Integrating this equation with limits Q1, Q2, T1 and T2 yields:

Q2 = Q1 exp { ‒  (B*Q1 + C)*(T2  ‒ T1) } +  R1 * [ 1 ‒ exp { ‒ (B*Q1 + C)*(T2 ‒ T1) } ]            

or :

Q2 = Q1 exp { ‒  α * (T2  ‒ T1) } +  R1 * [ 1 ‒ exp { ‒ α * (T2 ‒ T1) } ] 

where:

   T2 – T1 is the time step

   T1  is the initial moment of the time step. or the final moment of the previous time step

   T2  is the final moment of the time step

   Q2 is the outflow at T2

   Q1  is the outflow at T1

   R1  is the inflow at T1

   α   is the reaction factor or reservoir response function



3. Operational properties of the FloodRoute model software

The operational properties of the FloodRoute model software (Oosterbaan 2022, refernce 3) are 
illustrated in figures 2 and 3 hereunder.

Figure 2. Input menu user unterface (red oval). The option selected is: “Determine alpha from 
inflow and outflow data and reconstruct outflow” (blue arrow). The data have been copied from 
an Excel spreadsheet and pasted in the table. When the input is completed click “Save / Run” 
(green square).



Figure 3. Output menu user interface (red oval) with calibration results of the parameters A and 
C of  the response factor Alpha (blue arrow) and option to view the graphs (green square).



4. Examples of parameter calibration

4.1 The Ramirez data

Ramirez (reference 4) has given input and output data for a Muskingnum model. He obtained the 
following result.

Figure 4. Results of the Muskingnum method obtained by Ramirez.

Using these data for calibrations of the parameters B and C of the non-linear reservoir model by 
means of the FloodRoute software, the following results are encountered.



Figure 4. Inflow, measured and simulated outflow using the Ramirez data in the FloodRoute 
model software program. The parameters of the reaction function  (response factor)

 α = (B*Q + C) have been calibrated and optimized as B = 0.000 and C = 0.355.

The fit of the observed outflow data to the calculated (simulated) outflow curve in figure 4 is 
quite good, but in figure 3 it looks even better. It may be noted that the Ramirez data were created
for an educative exercise. A further analysis of the goodness of fit aspects will be given in the 
next section.

4.2 The Ahwaz data

Hadi Norouzi and Jalal Bazargan (2020, reference 5) have analyzed three flood routing cases.
In their study, the recorded data for the Mollasani hydrometric station (station no. 21–308, 48°53′
E, 31°35′N) at the upstream part and the Ahwaz hydrometric station (station no. 21–309, 
48°40′E, 31°20′N) (Distance 60.5 Km) at the downstream part of the study reach (section) are 
used, both related to the Karun River in Iran.

The calibration of the parameters of the reaction function  (response factor) for the first data 
series resulted in a calculated (simulated) outflow as demonstrated in figure 5.
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Figure 5.  Output graphs of the calibration phase for the first data series (first food). The 
parameters of the response function Alpha are  A = 0.0000 and C =  0.0750. The observed (blue 
dots) and calculated (simulated)  outflow graphs coincide nicely with a high R-square value 
(0,987) close to its maximum value 1.

The calibration of the parameters of the reaction function  (response factor) for the second data 
series resulted in a calculated (simulated, white curve) outflow as demonstrated in figure 6.



Figure 6.  Output graphs of the calibration phase for the second data series (second flood). The 
parameters of the response function Alpha are  A = 0.0005 and C = - 0.114. The observed (blue 
dots) and calculated (simulated, white curve)  outflow graphs coincide nicely with a high           
R-square value (0,993) close to its maximum value 1.

5. Example of flood wave prediction in Ahwaz

In figure 7 the parameters of reservoir function as determined fro the first and second data series 
(the 1st and 2nd flood) have been used to predict the outflow wave for the third data series (the 
3rd flood or Q3).
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Figure 7. Predicted  outflow wave for the third data series (the 3rd flood or Q3) using the 
parameters of reservoir function as determined from the first data series (the 1st flood, orange 
curve) and the second data series (the 2nd flood, purple curve) .

Figure 8 presents similar results as reported by Hadi Norouzi and Jalal Bazargan (2020, reference
5) using the Muskingum method. The curves for the predicted outflow waves based on the 
findings of the first and second data series have the same color as in figure 7: orange and purple 
respectively. There is a considerable agreement between the predicted curves for each case.
 .

Figure 8. Results reported by Hadi Norouzi and Jalal Bazargan (2020, reference 5)
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In figure 8  there is a small difference between the red curve (observed outflow) and the green 
curve (the outflow simulated with the Muskingnum model), while in figure 7 this difference is 
hidden. Therefore, the next figure (figure 9) is included to clarify the minor difference between 
the observed outflow (white curve) and outflow simulated with the FloodRoute model (blue 
dots).

Figure 9.There is minor difference between the observed outflow (white curve) and outflow 
simulated with the FloodRoute model (blue dots), but the goodness of fit defined by the R-square 
value (0.992) is very high and almost perfect (when R-square equals 1).

6. Summary and conclusion

In has been shown that the FloodRoute model can produce a simulated outflow wave that closely 
resembles the observed wave. Further, the calibrated (optimized) parameters of the response 
function belonging to the non-linear reservoir model employed are able to take part in a 
prediction of outflow waves for which no observed outflow waves are available that is as correct 
as the Muskingum model used by Hadi Norouzi and Jalal Bazargan (2020, reference 5).
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The FloodRoute software program is unique in the sense that it provides a simple input menu for 
the data (figure 2) and the all the calculations are done automatically, while the mathematical 
results are clearly revealed (figure 3) and the corresponding graphics are easily made available.
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8. Appendix (Principles of the Muskingnum model)

Figure A schematically shows the reaches (stretches) of a river and various water storage 
situations that are of importance for the analysis of the mathematics for the routing of flood 
waves.

Figure A. Muskingnum representation of channel storage reproduced by Linsley, Kohler and
                 Paulus, 1982, Hydrology for Engineers (McGraw-Hill Series in Water Resources and
                 Environmental Engineering).

Figure B presents an inflow and an outflow discharge wave in and out from a rive r section over 
time

Figure B. Schematic diagram of upstream (I) and downstream (O) flood hydrograph at the 
                beginning (j) of a time step and at the beginning of the next time step (j+1).
                Δt is the length of the time step. 

    The places of Inflow and Outflow are at a certain distance.



The rate of change of storage dutin a time interval dT of water between the upstream and 
downstream end of the river reach (section) is:
(1)     dS / dT = I ‒ O
 
while the amount of water stored is
(2)     S = K * [R*I  + (1 ‒ R)*O]

where S = storage; I = inflow; O = outflow; T = time; K = storage time constant for the river 
reach (stretch) and R = dimensionless weighting factor representing the inflow outflow effects on
storage. R ranges between 0 and 0.5 for reservoir storage and 0 and 0.3 for stream channels

Equation (2) is known as the Muskingum Equation (Reference: Chow V. T. 1959 Open Channel 
Hydraulics. McGraw-Hill Book Company,New York, NY).

The outflow (Op) over the time step dT is written as:

Op = C1*Ip + C2*Iv  + C3*Ov

where Ip is the inflow over the present time step, Iv is the inflow over the foregoing time step and
Ov is the outflow over the foregoing time step, while:

C1 = (0.5*dT ‒  K*R) / [K ‒ K*R + 0.5*dT]

C2 = (0.5*dT + K*R) / [K ‒ K*R + 0.5*dT]

C3 = [K ‒ K*R ‒ 0.5*dT] / [K ‒ K*R + 0.5*dT]

C1 + C2 + C3 = 1

Application of the Muskingum model involves a calibration phase to determine the values of  K 
and R and a prediction phase applying these  values.


