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ABSTRACT
Hooghoudt's drainage equation for flat land is adjusted in this article  to cover the drainage of
sloping land by horizontal and parallel subsurface pipe drains with entrance resistance. The
drains are laid along the contours at equal depth below the soil surface, which receives a
steady recharge evenly distributed over the area. The adjusted equations are tested against the
results obtained with a numerical method of finite elements described by Fipps and Skaggs
(1989), and against the results of sand tank experiments described by Zeigler (1972). The tests
show a good agreement. In practice, the adjusted Hooghoudt equation is easier to apply than
the numerical and scale models.

   
1           INTRODUCTION    

Recently,  Fipps  and  Skaggs  (1989)  reviewed  published  experiments  and  theories  of  the
subsurface drainage of sloping land, and presented their own analysis based on the method of
finite elements. They considered the case of subsurface drainage by parallel and horizontal pipe
drains with entrance resistance, placed at equal depth along the contours of the sloping land,
which receives a steady recharge evenly distributed over the area. 

LeSaffre (1987) mentioned that so far no analytical formulae have been determined to
show the relationship between all the parameters involved in the drainage of sloping land. He
therefore presented the derivation of such formulae and gave a simple solution for drains resting
on an impervious layer. In other cases, his solutions are not explicit, and they do not include the
effect of entrance resistance.     

In the following, the Hooghoudt equation (Hooghoudt 1940) will be adjusted to enable
an explicit and fairly simple mathematical description of the relations between the parameters,
including the depth to an impermeable layer, entrance resistance, and the slope of the land.

The adjusted equation will be applied to the same drainage situation as described by
Fipps and Skaggs (1989), and the results of the Hooghoudt method will be compared with those
obtained by Fipps and Skaggs with the finite element method. In addition,  a comparison will be
made with the results of sand tank experiments reported by Zeigler (1972).      
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2           HOOGHOUDT'S DRAINAGE EQUATION    

Hooghoudt's  drainage  equation  (Hooghoudt  1940)  gives  a  mathematical  relation  of  the
parameters  involved in the subsurface drainage  of flat  land by a  system of horizontal  and
parallel ditches or pipe drains without entrance resistance, placed at equal depth and subject to a
steady recharge evenly distributed over the area (Figure 1). 

The most widely known form of Hooghoudt's equation was presented by Wesseling
(1972). In a slightly modified form, it reads:

       qL = (8Hm/L)(Kb.De+Ka.Ha)                                  (1)

where  q  is  the  steady recharge  of  water  percolating  to  the  water  table  equal  to  the  drain
discharge (m/day or m/hr), L is the drain spacing (m), Hm is the height of the water table mid-
way between drains, taken with respect to the centre of the drain (m),  Kb is the hydraulic
conductivity of the soil below drain level (m/day or m/hr), Ka is the hydraulic conductivity of
the  soil  above  drain  level  (m/day  or  m/hr),  De  is  Hooghoudt's  equivalent  depth  to  the
impermeable layer below drain level, and Ha=Hm/2 is the average height of the water table
above drain level.     

The equivalent depth De depends on the depth D of the impermeable layer below the
drains as follows:

If D<R:  De = D                                   (2a)     
If R<D<L/4:   De = D.L/{(L-D2)+8D.L.ln(D/R)}        (2b)     
If D>L/4:    De = L/8ln(L/R)                         (2c)

where R is the drain radius (m). For L/8<D<L/2, Equations 2b and 2c give almost the same
result. Equation 2b is the outcome of an analysis of Hooghoudt's theory by Labeye (1960) as
reported by Wesseling (1972). Wesseling, however, gives a different expression for depth De
when R<D<L/4, which is not based on Hooghoudt's drainage equation, but on that of Ernst. The
two expressions yield only a very small difference in the values of De. Equations 2a and 2c
were given by Hooghoudt (1940).

If the drains are open ditches instead of buried pipes, the above equations are applicable
with an equivalent radius calculated as R=W/π, where W is the wetted perimeter of the ditch.     

The above equations can be adjusted to take an-isotropic hydraulic conductivity into
account (Boumans 1979). They can also be adjusted to take the resistance to vertical downward
flow  into  account  using  the  principles  described  by  Oosterbaan  (1986).  Further,  if  the
coefficient 8 is changed into 6.4, the equations can be used for drainage with a falling water
table (Oosterbaan et al. 1989).     



Figure 1. Illustration of the parameters involved in Hooghoudt's equation



3           DRAINAGE OF SLOPING LAND WITH ENTRANCE RESISTANCE    

Figure  2  illustrates  the  parameters  involved  in  the  drainage  of  sloping land  with  entrance
resistance. The symbols used in the figure are defined as follows:

- D is the depth of an impermeable layer below the drain centre (m); 
- G is the depth of the drain centre below the soil surface (m);  
- Ho is the entrance head, equal to the height of the water table just above the drain, measured
from the centre of the drain (m);
- Hu is the height of the water table at the water divide between drains, measured in upslope
direction from the centre of a drain (m);
- Hu'=Hu-Ho (Hu reduced with entrance head);
- Hd is the height of the water table at the water divide between drains, measured in down slope
direction from the centre of the drain (m);
- Hd'=Hd-Ho (Hd reduced with entrance head);
- H* is the height of the water table midway between drains, measured from the centre of the
nearest down slope drain (m);
- Hgr is the height of the water table midway between drains, measured from the sloping line
through the centres of the drains (m);
- I is the depth of the water table below the soil surface midway between drains (m);
- L is the drain spacing (m);
- M=L/2 (half the drain spacing);
- S is the slope of the land (m/m);
- Zu is the distance to the water divide between drains, measured in upslope direction from a
drain (m);
- Zd is the distance to the water divide between drains, measured in down slope direction from a
drain (m).

Figure 2. Illustration of the distance parameters involved in the drainage of sloping lands, with
entrance resistance taken into account    



4 ADJUSTING HOOGHOUDT'S EQUATION FOR ENTRANCE RESISTANCE    

The equation of Hooghoudt can be adjusted to take into account the   entrance resistance to the
flow of groundwater around the drain, using the principles discussed by Oosterbaan et al. (1989,
1990a and b) and replacing in the equations: 

- Hm by  Hm'=Hm-Ho (Hm is reduced with entrance head) 
- D by D" =D+Ho (D is increased with entrance head)
- R by R" =R+Ho   (R is increased with entrance head)
- Ha by  Ha'=(Hm-Ho)/2, where Ho is the entrance head as defined above.

The  entrance  head  can  be  determined  directly,  or  according  to  the  radial  flow  concept
(Oosterbaan 1990a):

Ho-R = (E.q.M/)ln(Ho/R)                                   (3)

where, in addition to the symbols already defined, E is the entrance resistance (day/m or hr/m).
It is the inverse of Ke (m/day or m/hr), the effective hydraulic conductivity of the material
around the drain, including the effect of the secondary contraction of the flow: E=1/Ke.

To take E or Ke into account in the finite element method, Fipps and  Skaggs used an
equivalent radius r=0.01m of the drain instead of the real radius R=0.05m. In this case, the
Equation 3 for entrance head   reads

       Ho-r = (q.M/K)ln(Ho/r)                                     (3a)

In the example provided by Fipps and Skaggs, we have the following data:  q=0.0022m/hr,
K=0.158m/hr, M=L/2=15m, and Ho=0.2m. The last value was measured from a figure in their
article that is reproduced in Figure 3. Thus we find from Equation 3a that Ho=0.209m, which is
close to the given value Ho=0.2m.

Figure 3. The shape of the water table obtained with the finite element method as published by
Fipps and Skaggs (1989)



5 ADJUSTING HOOGHOUDT'S EQUATION FOR SLOPING LAND

In Hooghoudt's drainage equation, the water divide between the drains, and therefore the zone
of influence of a drain, is found at a distance M=L/2 from the drain, i.e. midway between the
drains. In sloping land, with the drains placed along the contours, the zone of influence in
upslope direction (Zu) is larger than in down slope direction (Zd). This implies that the water
divide is not midway between the drains (Figures 2, 4, 5, and 6).

However, Hooghoudt's equation (Equation 2) can be adjusted to sloping land by using
the principles introduced by Oosterbaan (1975) by which L is either replaced by 2Zu or by 2Zd,
so that Equation 1 is changed into a set of two equations. 

The height (Hm) of the water table midway between the drains above drain level is then
replaced by the height Hu of the water table at Zu (Hu>Hm) and by the height Hd at Zd
(Hd<Hm) respectively. 

Further, the average height Ha of the water table between the drains   above drain level
is  replaced  by  half  the  height  of  the  water  table  at  the  water  divide  (i.e.  at  Zu  and  Zd
respectively)  above  the  sloping  line  through  the  centres  of  the  drains,  giving  respectively
Hau=(Hu-S.Zu)/2 and Had=(Hd+S.Zd)/2, where S represents the slope (m/m). 

Finally, the drain radius R is replaced by Ru=R.Zu/M and Rd=R.Zd/M   respectively,
because the water from the upstream side enters the drain over a proportionally larger part of its
circumference. Now, the following relations exist    

Zu+Zd = 2M                                                 (4a)
Hu-Hd = S(Zu+Zd)                                           (4b)
Q = q(Zu+Zd)                                           (4c)

where Q is the steady discharge from the drain in m/day per m length of drain (m/day).

The general condition for the application of the adjustments is Zu<L and Zd>0. With extremely
steep slopes (S>10%), these conditions are perhaps not met, but then drainage is not a realistic
proposition anyway. Further, the adjusted equations are not valid for border  drains, i.e. the first
and the last drain of the system.

To facilitate the comparison of the results  of the adjusted Hooghoudt equation with
results found in literature, the adjusted Equation 1 is written as a quadratic equation in Hu':

Ka(Hu')2 + B.Hu' - C = 0
with 

B = 2Kb.Du" - Ka.S.Zu
C = q.Zu

where Du" is the value of De adjusted for entrance resistance and  slope.
Thus the solution of Hu' becomes

Hu' = {-B+(B+4Ka.C)}/2Ka                                 (5)



6 COMPARISON OF RESULTS WITH THE FINITE ELEMENT METHOD

Figure 3 shows a reproduction of a figure presented by Fipps and Skaggs  (1989). From the
original  figure,  the  following  estimates  can  be  made:   Zu=24m,  Zd=6m,  Hu=1.8m,  and
Hd=0.3m. As the slope is S=0.05m/m, and the spacing is L=30m, Equations 4a and b can be
verified. According to the data of Fipps and Skaggs, we have in addition:  Ho=0.2m, D=2m,
R=0.05m, so that the adjustments for entrance resistance consist of replacing:

Hu=1.8m  by  Hu'=Hu-Ho=1.6m
D =2m    by  D" =D+Ho =2.2m
R =0.05m by  R" =R+Ho =0.25m

Also, since Zu=24m and M=L/2=15m, we replace R"=0.25m by Ru"=R".Zu/M=0.4 m

Further data given are q=0.0022m/hr, Ka=Kb=0.158m/hr.

Equation  5 now gives  Hu'=1.68m,  so that  Hu=Hu'+Ho=1.88m.  These  values  do not  differ
greatly from the given values Hu'=1.6m and Hu=1.8m respectively. The difference is 5%. It can
therefore be concluded that the adjusted Hooghoudt equation describes the situation adequately.

The height of the watertable H* at a distance M=L/2, i.e. midway between the drains,
and taken with respect to the level  of the drain centre downslope,  is to be found from an
application of Equation 1 to the mainly horizontal flow in the region Zu-M  substituting herein:

2(Zu-M) for L, 
D+H* for D, 
Hu-H* for Hm
(Hu-H*)/2 for Ha.

This gives:

H* = {(Hu+D)-q(Zu-M)/K)}-D                              (6)

With the given data, Equation 6 yields H*=1.73m.
Using:

Hgr.=H*-S.M                                             (7)

where Hgr. is the height of the water table midway between the drains and above the sloping
line through the drain centres (Figures 2 and 4), we find that Hgr.=0.98m.  

If the land were flat instead of sloping, we could use Equation 1 to calculate the height
Hm of the water table midway between the drains with respect to the level of the drain centre,
still  using  the  adjustments  for  the  entrance  resistance.  Such  a  calculation  would  yield
Hm=0.94m, so that the difference between Hgr.(=0.98m) and Hm is small. Consequently, the
minimum depth (I) of the water table in drained sloping land is virtually the same as that in
drained flat land under   conditions that are otherwise the same. 

Hence, the adjusted Hooghoudt equation gives results that are in line with the generally
stated conclusion that there is no important error in water table depth when drainage systems in
sloping land are designed as if the land were flat (Fipps and Skaggs 1989).



7. COMPARISON OF RESULTS WITH SAND TANK EXPERIMENTS

Figures  4  and 5 are  reproductions  of  figures  presented  by Zeigler    (1972).  They are  the
outcome of experiments in a sand tank for a similar drainage situation as described earlier.
Figure 4 shows the shapes of the water table in the tank with a slope S=0.025m/m at varying
steady recharge rates ranging from q=0.00812 to 0.0161m/hr. It can be   seen that the zone of
influence Zu in upslope direction decreases as   the recharge rate increases. Figure 5 depicts the
shapes  of  the  water  table  at  varying  slopes,  ranging from S=0 to S=5%, when the  steady
recharge is q=0.0161m/hr. The figure shows that the zone Zu increases with increasing slope.

The following additional data were provided by Zeigler (1972):  L=3.66m, D=0.61m,
Ka=Kb=0.619m/hr.  The  drains  were  surrounded by a  permeable  envelope,  making  a  total
radius of R=0.061m. The entrance resistance cannot be clearly deduced from the figures. Yet,
some entrance resistance is likely to have occurred, because the recharge rates are extremely
high, ranging from q=195 to 386mm/day (!). It is therefore estimated that Ho=0.01m when
q=0.00812m/hr  and  Ho=0.02m  when  q=0.0161m/hr.  This  gives  an  adjusted  drain  radius
R"=R+Ho=0.07m and R"=0.08m respectively. 

Now, with the adjusted Hooghoudt equation (Equation 5), the maximum height of the
water table at the water divide can be calculated from the  data. A selection of the cases reported
by Zeigler is used. The comparison of the results of the calculation with the experimental results
is given in Table 1.

Table  1  shows  that  the  calculated  Hu  values  are  in  good  agreement  with  the
experimentally  measured  values.  The  maximum  difference  (found  in  the  column  with
S=0.05m/m and q=0.0161m/hr) amounts to 7%. It can   therefore be concluded that the adjusted
Hooghoudt equation also describes these situations adequately.

Table 1 also shows that  the Hgr.  values (i.e.  the height of the water  table  midway
between the drains above the line connecting the centre points of the drains, Figure (1), are
virtually the same for all   the cases with q=0.0161m/hr. This again confirms that the drainage
of   sloping land can be treated as if the land were flat  

Figure 4. The height of the water table at varying recharge rates in sand tanks as reported by
Zeigler (1972) and with calculated points



Figure 5. The height of the water table at varying slopes in sand tanks as reported by Zeigler
(1972) and with calculated points      

Table 1. Comparison of experimental results of drainage in a sloping sand tank (Zeigler 1972)
with results of the adjusted Hooghoudt equation, using the same data 

8. SUMMARY AND CONCLUSION

The drainage equation of Hooghoudt can be adapted to a wide variety of   drainage conditions
by small and simple adjustments.  In this article,  the equation was adjusted to take entrance
resistance and land slope   into account, yielding mathematical expressions that can be solved
with  a pocket calculator. With previously reported expressions, this was not possible. Until
now, analysing the drainage of sloping land depended   mainly on numerical or scale models.
The adjusted equations  have  been tested  with  data  from literature  on sand tank and finite
element  models,  under  identical  drainage    conditions.  The  differences  were  small,  which
indicates that the   adjusted Hooghoudt is quite accurate.
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